ASYMPTOTIC BEHAVIOR OF A-HARMONIC FUNCTIONS AND p-EXTREMAL LENGTH
نویسندگان
چکیده
منابع مشابه
Asymptotic Behavior of Infinity Harmonic Functions Near an Isolated Singularity
In this paper, we prove that if n ≥ 2 and x0 is an isolated singularity of a non-negative infinity harmonic function u, then either x0 is a removable singularity of u or u(x) = u(x0) + c|x − x0| + o(|x − x0|) near x0 for some fixed constant c = 0. In particular, if x0 is nonremovable, then u has a local maximum or a local minimum at x0. We also prove a Bernstein-type theorem, which asserts that...
متن کاملa contrastive study of rhetorical functions of citation in iranian and international elt scopus journals
writing an academic article requires the researchers to provide support for their works by learning how to cite the works of others. various studies regarding the analysis of citation in m.a theses have been done, while little work has been done on comparison of citations among elt scopus journal articles, and so the dearth of research in this area demands for further investigation into citatio...
A lower estimate of harmonic functions
We shall give a lower estimate of harmonic functions of order greater than one in a half space, which generalize the result obtained by B. Ya. Levin in a half plane.
متن کاملOn a linear combination of classes of harmonic $p-$valent functions defined by certain modified operator
In this paper we obtain coefficient characterization, extreme points and distortion bounds for the classes of harmonic $p-$valent functions defined by certain modified operator. Some of our results improve and generalize previously known results.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the Korean Mathematical Society
سال: 2010
ISSN: 1015-8634
DOI: 10.4134/bkms.2010.47.2.423